In doing a simple programming exercise while preparing for a job interview, I decided to sort the input. I wrote a solution for the exercise in 10 minutes, and then spent the next two days implementing “all of the basic sorting algorithms”. When I finally had bubble sort, insertion sort, selection sort, quicksort (with various types of pivots), shell sort, heap sort, radix sort (base 16, no mod operator or division), merge sort, and bogo sort implemented, I wrote some code to test and time the different sorts with various inputs.

### Benchmark inputs

“What is the best sorting algorithm?” I have seen this question a dozen times, and the best answer is, invariably: it depends what you are sorting. Not only does it depend on the length of the input array, it also depends on how sorted you expect it to be in the first place, and whether or not the array values are bounded. For example, insertion sort is worst case quadratic, but it’s still extremely fast for long arrays that are already nearly sorted. It’s also faster than it’s asymptotically better counterparts on very short input arrays. For arrays with only small values, radix sort (with counting sort as a subroutine) provides near-linear sort-time. What if you have many small values and a few large ones?

Choosing the best sorting algorithm is as much about knowing what you sorting as it is about the relative performance of the algorithms.

What, then, are some good benchmarks? A lot of data “in the wild” is already sorted, either mostly or completely, so (mostly) pre-sorted inputs are a must. The sort order of the data might also be opposite the sort order of the sorting algorithm, and in many cases this is the difference between best and worst case performance. We already have five benchmark properties to try:

• Unsorted
• Sorted
• Mostly sorted
• Reverse sorted
• Reverse mostly sorted

We might have a large amount of data that is keyed on just a few unique values, or that is keyed only on small values (think radix or counting sort). Perhaps we have a lot of small keys and a few large keys. Here are a few properties that can be combined with the above:

• Few unique keys
• Many unique keys
• Only small keys
• Mostly small keys

And finally, we may be sorting very short arrays frequently:

• One long array
• Many short arrays

My sorting algorithms are all offline and they work only in memory, so measuring CPU cycles should give a realistic comparison.

### Experiment setup

I generated a table for each sorting algorithm, with key-related properties and array-size in the rows, and pre-sorting properties in the columns. The details of the properties are as follows:

• Few unique keys:
Values in range [0,49] are generated at random (see notes on randomness below), and then multiplied by 100,000,000.
• Many unique keys:
Values in range [0, 1000 000 000] are generated at random.
• Only small keys:
Values in range [0,49] are generated at random.
• Mostly small keys:
I did not run this experiment.

The presorting combinations are the ones mentioned in Benchmark inputs, above, and the details of mostly sorted are as follows: sort the array and divide into consecutive bins of size 10. Shuffle the elements in each bin, and reverse if needed.

For each ( key, pre-sorting )-pair I computed the cumulative time to do 1000 small arrays, and the mean times to do 100 medium arrays and 10 large arrays. I had to adjust the size of the large array for some of the slow (in the worst case) algorithms. Both input size, n, and trials, t, are given in the tables.

Random ints are obtained with random() (which is more uniform than rand()), using a technique I learnt on Stack Exchange. I will make a separate post about this later.

int rand_uniform(int min, int max){
//computing random number in range [0,range)
//using unsigned long to ensure no overflow of RAND_MAX+1
unsigned long range=max-min+1;
if(range<1){
fprintf(stderr,"Invalid range to random number generator\n");
exit(-1);
}
unsigned long bin_size=((unsigned long)RAND_MAX+1)/range;
unsigned long limit=range*bin_size;
unsigned long x;
//this will execute an expected < 2 times
do x=random(); while(x>=limit);
return x/bin_size+min;
}


### Results

I benchmarked 9 sorting algorithms in 3 groups, according to the largest inputs they could handle in the worst cases. The choices of input lengths are somewhat ad hoc, but I tried to maintain some comparability between groups by making the medium length inputs of the first and second groups the same as the longest inputs of the next group, respectively, as well as making the smallest inputs all of length 100.

The first group comprises the worst case O(n log(n) ) algorithms, as well as radix sort and shell sort:

• mergesort
• heap sort
• shell sort

The second group is all quicksort, which has a worst case of O( n^2 ):

• quicksort with random pivot
• quicksort with sampled pivot (median of 11 random elements)
• quicksort with A pivot

And finally, the last group contains the quadratic sorts:

• selection sort
• insertion sort
• bubble sort

I have written some observations for each sort. A recurring theme is that swapping array elements costs a lot, and preventing trivial swaps (swap A[i] with A[i]) can make a huge difference on certain types of input. I’ve shown this with the quicksorts and shell sort.

Execution times are given in CPU seconds.

#### merge sort

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.008889 0.014349 0.021700 0.029357 0.036953
n=    100000 mean t=  100 0.015408 0.026967 0.039481 0.052399 0.066335
n=   1000000 mean t=   10 0.252024 0.418450 0.599300 0.774420 0.966373
Many unique keys
n=       100 cum. t= 1000 0.013138 0.020501 0.030311 0.041623 0.054453
n=    100000 mean t=  100 0.031481 0.049133 0.067820 0.087451 0.107525
n=   1000000 mean t=   10 0.429134 0.647922 0.856734 1.072369 1.297901
Only small keys
n=       100 cum. t= 1000 0.011003 0.017600 0.025798 0.034043 0.043056
n=    100000 mean t=  100 0.023124 0.040034 0.055908 0.074428 0.091996
n=   1000000 mean t=   10 0.282332 0.472215 0.653874 0.835970 1.023076


Merge sort performs similarly for all types of input, though almost one order of magnitude better on randomly sorted input than on mostly reversed input. This is likely related to the performance of insertion sort. It also does somewhat better with fewer keys (small keys also imply few), which might again be due toinsertion sort’s performance in these cases.

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.023268 0.043492 0.061576 0.084187 0.113511
n=    100000 mean t=  100 0.016567 0.032285 0.048259 0.063829 0.079416
n=   1000000 mean t=   10 0.163286 0.322030 0.472653 0.640014 0.790950
Many unique keys
n=       100 cum. t= 1000 0.022257 0.045786 0.067534 0.090238 0.112354
n=    100000 mean t=  100 0.013822 0.028326 0.042444 0.057045 0.071284
n=   1000000 mean t=   10 0.134505 0.274373 0.420898 0.564570 0.700151
Only small keys
n=       100 cum. t= 1000 0.006753 0.013999 0.020990 0.027771 0.034105
n=    100000 mean t=  100 0.004051 0.008360 0.012874 0.017107 0.021173
n=   1000000 mean t=   10 0.040284 0.079419 0.121629 0.166073 0.202377


Radix sort is performs very well in all cases, and often an order of magnitude or more better than its competitors. Notice the big boost when sorting small keys; this is exactly what we expect of radix sort.

#### heap sort

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.023102 0.051962 0.067207 0.090984 0.103930
n=    100000 mean t=  100 0.049757 0.093175 0.133780 0.174991 0.214535
n=   1000000 mean t=   10 0.564437 1.057507 1.535102 2.047978 2.528759
Many unique keys
n=       100 cum. t= 1000 0.017535 0.038659 0.049879 0.075265 0.100087
n=    100000 mean t=  100 0.053616 0.144015 0.186376 0.273189 0.318912
n=   1000000 mean t=   10 0.724070 1.889440 2.405827 3.527297 4.060935
Only small keys
n=       100 cum. t= 1000 0.024596 0.051553 0.064086 0.089849 0.104462
n=    100000 mean t=  100 0.048604 0.090844 0.130350 0.172201 0.212220
n=   1000000 mean t=   10 0.572826 1.056876 1.550843 2.042710 2.524612


Heapsort benefits from having few unique keys, likely because it simplifies the heap, reducing the number of times that something has to travel all the way up or down the heap. It looks a bit weak compared to merge sort, but perhaps that’s because of the number of function calls my implementation does calling parent and child (or perhaps not? maybe the compiler inlines those).

#### shell sort

shell sort
unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.008306 0.011205 0.015687 0.020213 0.025957
n=    100000 mean t=  100 0.023978 0.028662 0.061678 0.066258 0.103365
n=   1000000 mean t=   10 2.243850 2.328500 8.383705 8.467235 13.933181
Many unique keys
n=       100 cum. t= 1000 0.013244 0.017514 0.023101 0.029830 0.037646
n=    100000 mean t=  100 0.050499 0.057159 0.107181 0.116864 0.169932
n=   1000000 mean t=   10 2.922308 3.013901 9.482882 9.610873 15.535969
Only small keys
n=       100 cum. t= 1000 0.012751 0.017415 0.025032 0.034392 0.044506
n=    100000 mean t=  100 0.036788 0.043620 0.094942 0.101830 0.150294
n=   1000000 mean t=   10 2.752856 2.845242 8.773390 8.869967 15.316640


Reversed inputs are definitely a troublesome case for shell sort, and it’s noticeably slower than the previous 3 in this group, but notice that key size and frequency doesn’t matter much at all.

#### quicksort rand pivot

This is the first of the second group, where the input lengths are 100, 10 000, 100 000, so before you get excited about the running times, make sure you are comparing the right things.

Does trivial swaps:

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.015292 0.025583 0.036488 0.046039 0.057148
n=     10000 mean t=  100 0.012060 0.023865 0.035757 0.047574 0.059803
n=    100000 mean t=   10 1.093409 2.141790 3.165854 4.217718 5.287483
Many unique keys
n=       100 cum. t= 1000 0.007623 0.013983 0.022010 0.030425 0.038518
n=     10000 mean t=  100 0.002210 0.003362 0.004629 0.006229 0.007504
n=    100000 mean t=   10 0.025385 0.040178 0.057318 0.075402 0.095495
Only small keys
n=       100 cum. t= 1000 0.008600 0.014387 0.024551 0.031904 0.038481
n=     10000 mean t=  100 0.011888 0.023325 0.035688 0.047062 0.058339
n=    100000 mean t=   10 1.086990 2.133844 3.200213 4.255836 5.281811


No trivial swaps:

quicksort rand pivot
unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.007597 0.012089 0.020315 0.026147 0.033506
n=     10000 mean t=  100 0.003870 0.007311 0.010873 0.014267 0.017885
n=    100000 mean t=   10 0.274893 0.550136 0.822602 1.092670 1.354651
Many unique keys
n=       100 cum. t= 1000 0.007324 0.010833 0.016098 0.022465 0.029284
n=     10000 mean t=  100 0.001527 0.002101 0.003146 0.003934 0.005039
n=    100000 mean t=   10 0.019573 0.025388 0.037811 0.048063 0.059828
Only small keys
n=       100 cum. t= 1000 0.007193 0.011651 0.017675 0.022824 0.029322
n=     10000 mean t=  100 0.003565 0.007432 0.011178 0.014671 0.018928
n=    100000 mean t=   10 0.305417 0.622128 0.931763 1.251941 1.585888


Unlike radix sort, quicksort’s best performance is on many unique keys, and it is lightning fast.

There are other quicksorts that do a better job on fewer keys, but I think the take home is that if the keys are unbounded (e.g., sorting strings instead of ints), and the inputs are somewhat random, then quicksort will overtake radix sort.

Quicksort has the best all-round performance for short arrays, of length 100 as well (insertion sort kicks in at 10 anyway, see implementations below).

Notice that many trivial swaps are made when there are small or few unique keys, so we make significant performance gains by avoiding trivial swap in those cases.

#### quicksort sample pivots

Does trivial swaps:

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.011113 0.022533 0.050936 0.076597 0.097487
n=     10000 mean t=  100 0.016849 0.033906 0.051184 0.068535 0.086613
n=    100000 mean t=   10 1.139067 2.252892 3.391474 4.488898 5.619355
Many unique keys
n=       100 cum. t= 1000 0.011991 0.023476 0.035319 0.048608 0.061077
n=     10000 mean t=  100 0.001922 0.004049 0.005808 0.007694 0.009718
n=    100000 mean t=   10 0.031631 0.053147 0.077470 0.101593 0.119885
Only small keys
n=       100 cum. t= 1000 0.010924 0.023017 0.037136 0.048897 0.064815
n=     10000 mean t=  100 0.017652 0.034697 0.052235 0.069108 0.086392
n=    100000 mean t=   10 1.124645 2.270968 3.372665 4.496212 5.648460


No trivial swaps:

quicksort sample pivots
unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.012233 0.024042 0.036269 0.048778 0.061233
n=     10000 mean t=  100 0.009999 0.019239 0.028932 0.039122 0.048028
n=    100000 mean t=   10 0.409569 0.767142 1.160827 1.537898 1.930502
Many unique keys
n=       100 cum. t= 1000 0.021888 0.039612 0.056072 0.071861 0.085046
n=     10000 mean t=  100 0.002030 0.003950 0.005888 0.007761 0.009725
n=    100000 mean t=   10 0.027172 0.051049 0.074264 0.100132 0.122430
Only small keys
n=       100 cum. t= 1000 0.016623 0.031822 0.045721 0.059695 0.074518
n=     10000 mean t=  100 0.011944 0.022877 0.033032 0.042883 0.052858
n=    100000 mean t=   10 0.402972 0.790716 1.181511 1.590763 1.975614


Unsurprisingly, randomly sampled pivots do not yield better performance than a random pivot for the types of inputs I benchmarked.

#### quicksort

Does trivial swaps:

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.008412 0.019396 0.040898 0.047171 0.061713
n=     10000 mean t=  100 0.010626 0.021840 0.162555 0.174314 0.300646
n=    100000 mean t=   10 1.058832 2.152600 16.595871 17.645692 27.619864
Many unique keys
n=       100 cum. t= 1000 0.016909 0.047902 0.096482 0.105939 0.121583
n=     10000 mean t=  100 0.001500 0.183752 0.539544 0.586058 0.675808
n=    100000 mean t=   10 0.025020 18.434709 53.367040 58.163498 66.914414
Only small keys
n=       100 cum. t= 1000 0.007031 0.016319 0.040730 0.048951 0.060752
n=     10000 mean t=  100 0.011752 0.022146 0.160856 0.173556 0.298355
n=    100000 mean t=   10 1.062395 2.170551 15.381749 16.576828 33.978687


No trivial swaps:

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.008386 0.017133 0.028175 0.034515 0.048920
n=     10000 mean t=  100 0.005006 0.009382 0.058085 0.063350 0.103289
n=    100000 mean t=   10 0.363506 0.706342 6.513671 6.880759 11.827864
Many unique keys
n=       100 cum. t= 1000 0.010197 0.031478 0.052130 0.061410 0.071172
n=     10000 mean t=  100 0.002337 0.191765 0.391462 0.445639 0.528083
n=    100000 mean t=   10 0.024932 20.104292 39.919410 45.195053 53.560765
Only small keys
n=       100 cum. t= 1000 0.010088 0.021882 0.035652 0.044448 0.058335
n=     10000 mean t=  100 0.005418 0.010846 0.061258 0.065940 0.110825
n=    100000 mean t=   10 0.366798 0.731917 4.784282 5.219642 9.861861


Here we see what a catasrophic failure it can be to use the first element as a pivot when the data has been presorted or reverse sorted. Compare the two randomised pivot schemes above!

Once again, significant gains can be made by avoiding trivial swaps.

#### selection sort

I did two versions of selection sort. The first one calls the swap function even if the swap is trivial, and the second one doesn’t. The difference is considerable, but nothing like what we saw in quicksort.

Does trivial swaps.

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.039077 0.065295 0.096381 0.117727 0.141555
n=      1000 mean t=  100 0.002485 0.004212 0.006809 0.008507 0.010578
n=     10000 mean t=   10 0.198644 0.383517 0.565173 0.758113 0.952356
Many unique keys
n=       100 cum. t= 1000 0.030804 0.054383 0.076002 0.097099 0.117401
n=      1000 mean t=  100 0.002482 0.004271 0.006185 0.007820 0.009402
n=     10000 mean t=   10 0.187554 0.377594 0.555244 0.749135 0.981563
Only small keys
n=       100 cum. t= 1000 0.019392 0.038758 0.061850 0.081514 0.107969
n=      1000 mean t=  100 0.001678 0.004167 0.005825 0.007829 0.009853
n=     10000 mean t=   10 0.185607 0.358608 0.555364 0.746996 0.923890


Does not do trivial swaps.

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.019897 0.035554 0.056504 0.073038 0.090483
n=      1000 mean t=  100 0.001518 0.002849 0.004628 0.006151 0.007803
n=     10000 mean t=   10 0.143865 0.284060 0.424768 0.566863 0.706828
Many unique keys
n=       100 cum. t= 1000 0.017861 0.031654 0.049689 0.065296 0.086167
n=      1000 mean t=  100 0.001460 0.002861 0.004218 0.005868 0.007304
n=     10000 mean t=   10 0.137928 0.280246 0.408686 0.545818 0.716902
Only small keys
n=       100 cum. t= 1000 0.019534 0.033845 0.053782 0.071332 0.092680
n=      1000 mean t=  100 0.001471 0.002844 0.004270 0.005606 0.007208
n=     10000 mean t=   10 0.141999 0.281048 0.415701 0.553452 0.693397


#### insertion sort

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.009309 0.010388 0.031511 0.034575 0.053558
n=      1000 mean t=  100 0.001263 0.001274 0.003695 0.003704 0.006256
n=     10000 mean t=   10 0.106185 0.106253 0.336115 0.336185 0.555283
Many unique keys
n=       100 cum. t= 1000 0.012672 0.013854 0.036083 0.039154 0.059792
n=      1000 mean t=  100 0.001038 0.001044 0.003939 0.003966 0.006330
n=     10000 mean t=   10 0.116284 0.116347 0.344594 0.344928 0.574738
Only small keys
n=       100 cum. t= 1000 0.017111 0.018782 0.044102 0.047341 0.068438
n=      1000 mean t=  100 0.000984 0.000995 0.003364 0.003375 0.006297
n=     10000 mean t=   10 0.108734 0.108788 0.341410 0.341463 0.562227


Insertion sort is clearly the best performer among my quadratic sort implementations. As expected, it does better with sorted data than with reversed data, and the sizes of the keys don’t matter. What puzzles me, however, is that unsorted and sorted are the same (I hope I have not made an error!).

#### bubble sort

                unsorted sorted reversed mostly_sorted mostly_reversed
Few unique keys
n=       100 cum. t= 1000 0.078510 0.114953 0.209767 0.258683 0.329370
n=      1000 mean t=  100 0.005851 0.009843 0.017096 0.021669 0.029106
n=     10000 mean t=   10 0.762319 1.161017 1.885205 2.284290 3.026368
Many unique keys
n=       100 cum. t= 1000 0.054761 0.087367 0.213627 0.263277 0.334638
n=      1000 mean t=  100 0.005857 0.009696 0.017421 0.021774 0.028827
n=     10000 mean t=   10 0.718532 1.119410 1.875999 2.288199 3.039036
Only small keys
n=       100 cum. t= 1000 0.070953 0.102099 0.200582 0.248663 0.317165
n=      1000 mean t=  100 0.006718 0.010932 0.018969 0.022913 0.030559
n=     10000 mean t=   10 0.766333 1.187963 1.953355 2.370041 3.151571


It’s the worst. Don’t bubble sort.

### Sorting Algorithms

I describe my implementation of each algorithm below. Each of these algorithms has been discussed to death already, so I won’t really try to make this a lesson about asymptotic running time and space. If you are interested, my favourite quick reference right now is the BIGOCHEATSHEET.

This is raw stuff that I just wrote to learn to implement the algorithms, so your critiques are welcome.

First, here is my swapping utility:

void swap(int *A, int i, int j){
int tmp;
tmp=A[i];
A[i]=A[j];
A[j]=tmp;
}


And here is my dynamic array data structure:

int *m_array;
int m_array_size;//global initialises to 0
void m_array_resize(int n){
if(n>m_array_size && m_array) free(m_array);
if(n>m_array_size){
m_array=malloc(2*n*sizeof(int));
m_array_size=2*n;
}
}


#### Bogo Sort

I didn’t benchmark bogo sort for obvious reasons…

void shuffle(int *A, int n){
int i;
for(i=0;i<n-1;i++){
swap(A,i,rand_uniform(i+1,n-1));
}
}

void bogo_sort(int *A, int n){
while(!is_sorted(A,n))
shuffle(A,n);
}


#### Insertion Sort

I had originally implemented Gnome sort, which does swaps at each step of the internal loop. Ooops! After that I made a second mistake, forgetting the break; statement in the updated version, so that insertion sort would do O(n^2) comparisons no matter what the input was.

Several of my sorting algorithms call insertion sort for inputs shorter than SORT_THRESHOLD=10.

void insertion_sort(int *A, int n){
int i,j,Aj;
for(i=1;i<n;i++){
Aj=A[i];
for(j=i;j>=0;j--){
if(j==0 || A[j-1]<=Aj){
A[j]=Aj;
break;
} else{
A[j]=A[j-1];
}
}
}
}


#### Bubble sort

void bubble_sort(int *A, int n){
int i,j;
if(n<2) return;
for(i=0;i<n;i++){
for(j=0;j<n-1;j++){
if(A[j]>A[j+1]) swap(A,j,j+1);
}
}
}


#### Selection sort

//returns index of a minimum value
//if n==0 returns error value -1
int min_val_index(int *A, int n){
int i,min_index;
if(n==0) return -1;
min_index = 0;
for(i=1;i<n;i++){
if(A[i]<A[min_index]) min_index=i;
}
return min_index;
}

void selection_sort(int *A, int n){
int i,k;
if(n<2) return;
for(i=0;i<n-1;i++){
if(( k=i+min_val_index(A+i,n-i) )!=i)
swap(A,i,k);
}
}


#### Quicksort(s)

Quicksort was the first “serious” sort I implemented. I demonstrate three distinct types of pivots: A, random, and sampled. I make some fairly arbitrary choices about pivots, like how many samples to use (QS_NSAMPLES=11), but the different concepts are there.

Sampling random elements to find a good pivot has potential advantages, but they will not be apparent against the fairly random inputs we are benchmarking with. Exercise: come up with inputs where the sampled pivot would clearly be better than the randomly chosen pivot.

Note how the partition function is called by incrementing the pointer, so it returns an index of the sub-array. I forgot to add 1 to its output at first, and it took me a while to find the bug.

//partition A in place around pivot.
//return partition, smallest index with value
//larger than pivot
int partition(int *A, int n, int pivot){
int partition=0,i;
for(i=0;i<n;i++){
if(A[i]<=pivot){
if(partition<i)//avoid trivial swaps
swap(A,partition,i);
partition++;
}
}
return partition;
}

//uses first element as pivot
void quicksort_sort(int *A, int n){
int ptn;
if(n<2) return;
if(n<SORT_THRESHOLD){
insertion_sort(A,n);
return;
}
ptn = 1 + partition(A+1,n-1,A);
if(ptn>1)//avoid trivial swaps
swap(A,0,ptn-1);
quicksort_sort(A,ptn-1);
quicksort_sort(A+ptn,n-ptn);
}

void quicksort_rand_pivot_sort(int *A, int n){
int ptn,rnd;
if(n<2) return;
if(n<SORT_THRESHOLD){
insertion_sort(A,n);
return;
}
rnd=rand_uniform(0,n-1);
if(rnd>0)
swap(A,0,rnd);
ptn = 1 + partition(A+1,n-1,A);
if(ptn>1)//avoid trivial swaps
swap(A,0,ptn-1);
quicksort_rand_pivot_sort(A,ptn-1);
quicksort_rand_pivot_sort(A+ptn,n-ptn);
}

void quicksort_sample_pivot_sort(int *A, int n){
int i,ptn;
if(n<2*SORT_THRESHOLD || n < 2*QS_NSAMPLES){
quicksort_rand_pivot_sort(A,n);
return;
}
//take the pivot to be the median of 11 samples
for(i=0;i<QS_NSAMPLES;i++){
swap(A,i,rand_uniform(i+1,n-1));
}
insertion_sort(A,QS_NSAMPLES);
swap(A,0,QS_NSAMPLES/2+1);
ptn = 1 + partition(A+1,n-1,A);
if(ptn>1)//avoid trivial swaps
swap(A,0,ptn-1);
quicksort_sample_pivot_sort(A,ptn-1);
quicksort_sample_pivot_sort(A+ptn,n-ptn);
}


#### Merge sort

Not much to say about merge sort! Note that I use the SORT_THRESHOLD.

//A fits both A and B
void merge_arrays(int *A, int n, int *B, int m){
int a,b,i;
m_array_resize(n+m);
a=b=i=0;
while(a<n & b<m){
if(A[a]<=B[b]){
m_array[i++]=A[a++];
}else{
m_array[i++]=B[b++];
}
}
while(a<n)m_array[i++]=A[a++];
while(b<m)m_array[i++]=B[b++];
for(i=0;i<n+m;i++){
A[i]=m_array[i];
}
}

void merge_sort(int *A, int n){
if(n<SORT_THRESHOLD){
insertion_sort(A,n);
return;
}
merge_sort(A,n/2);
merge_sort(A+n/2,n/2+n%2);
merge_arrays(A,n/2,A+n/2,n/2+n%2);
}


#### Heap sort

//heap sort
//max heap
int parent(int i){
return (i-1)/2;
}

int l_child(int i){
return 2*i+1;
}

int r_child(int i){
return 2*i+2;
}

void heapify(int A[], int nA){
int h,i;
for(h=1;h<nA;h++){
i=h;
while(i>0){
if(A[i]>A[parent(i)]){
swap(A,i,parent(i));
i=parent(i);
}else{
break;
}
}
}
}

int remove_max(int A[], int h){
int res,i,l,r,largest;
if(h==0) exit(-1);
res=A;
A=A[h-1];
//reheap
i=0;
while((l=l_child(i))<h){
largest=i;
if(A[largest]<A[l]){
largest=l;
}
if((r=r_child(i))<h && A[largest]<A[r]){
largest=r;
}
if(largest!=i){
swap(A,i,largest);
i=largest;
}else break;
}
return res;
}

void heap_sort(int A[], int nA){
int h=nA;
heapify(A,nA);
while(h>0){
A[h-1]=remove_max(A,h);
h--;
}
}


#### Shell sort

Before I started this exercise I thought that Shell referred to Shell sort’s relationship with bubble sort (shells are hard bubbles?). But then wikipedia burst my hardened bubble by informing me that a Mr. Shell invented the algorithm. Oh well!

int shell_gaps[]={701, 301, 132, 57, 23, 10, 4, 1};
int n_shell_gaps=8;

//sort the subarray A[0*h],A[1*h],...,A[k*h], where k*h<n
void insertion_h_sort(int *A, int n, int h){
int i,j,Aj;
for(i=h;i<n;i+=h){
Aj=A[i];
for(j=i;j>=0;j-=h){
if(j==0 || A[j-h]<=Aj){
A[j]=Aj;
break;
}else{
A[j]=A[j-h];
}
}
}
}

void shell_sort(int *A, int n){
int i,j;
for(i=0;i<n_shell_gaps;i++){
for(j=0;j<shell_gaps[i];j++){
if(j+shell_gaps[i]>=n) break;
else insertion_h_sort(A+j,n-j,shell_gaps[i]);
}
}
}


Radix sort was the most interesting of the lot to implement. It’s usually described in base 10, but that has nothing to do with the way ints are stored in memory. You need to use a base that is a power of 2, and that divides the number of bits in an int to truly take advantage of it, otherwise your code will be full of % and / operators, which are much slower than shifts >>.

I implemented a radix sort with a counting sort subroutine in base 16 (I have also seen base 256) that doesn’t use any divide operations. In order to take advantage of the bit representations of the inputs I had to treat negative numbers as a special case.

//radix for radix sort, should divide 32

//this is a stable sort on the exp digit in base 2^RADIX_BITS of the input
//array.
void radix_count_sort_nonneg_subroutine(int *A, int n, int exp){
m_array_resize(n);
}
for(i=0;i<n;i++){
}
}
for(i=n-1;i>=0;i--){
}
for(i=0;i<n;i++){
A[i]=m_array[i];
}
}

void radix_sort_positive(int *A, int n, int maxval){
while(maxval>0){
exp++;
}
}

//input A array of negative int
//this is a stable sort on the exp digit in base 2^RADIX_BITS of the input
//array.
void radix_count_sort_neg_subroutine(int *A, int n, int exp){
m_array_resize(n);
}
for(i=0;i<n;i++){
}
}
for(i=n-1;i>=0;i--){
}
for(i=0;i<n;i++){
A[i]=m_array[i];
}
}

void radix_sort_negative(int *A, int n, int maxval){
while(maxval>0){
exp++;
}
}

//deal with negatives, get min and max
int nnegatives=0,i,minval,maxval;
if(n<2) return;
minval=maxval=A;
for(i=0;i<n;i++){
if(A[i]<minval) minval=A[i];
else if(A[i]>maxval) maxval=A[i];
if(A[i]<0){
if(nnegatives < i)//avoid trivial swaps
swap(A,nnegatives,i);
nnegatives++;
}
}