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Japanese Tatami mats

Traditional Japanese floor mats made of soft woven
straw.
A 17th Century layout rule:
No four mats may meet.



No four dominoes (mats) may meet
Tatami coverings of rectangles were considered by
Mitsuyoshi Yoshida, and Don Knuth (about 370
years later).



No four dominoes (mats) may meet
Tatami coverings of rectangles were considered by
Mitsuyoshi Yoshida, and Don Knuth (about 370
years later).



No four dominoes (mats) may meet
Tatami coverings of rectangles were considered by
Mitsuyoshi Yoshida, and Don Knuth (about 370
years later).



No four dominoes (mats) may meet
Tatami coverings of rectangles were considered by
Mitsuyoshi Yoshida, and Don Knuth (about 370
years later).



No four dominoes (mats) may meet
Tatami coverings of rectangles were considered by
Mitsuyoshi Yoshida, and Don Knuth (about 370
years later).



No four dominoes (mats) may meet
Tatami coverings of rectangles were considered by
Mitsuyoshi Yoshida, and Don Knuth (about 370
years later).



No four dominoes (mats) may meet
Tatami coverings of rectangles were considered by
Mitsuyoshi Yoshida, and Don Knuth (about 370
years later).



Coverings of the chessboard

There are exactly two
Generalized by Ruskey, Woodcock, 2009, using
Hickerson’s decomposition.



Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R , with n grid squares.
QUESTION: Can R be tatami covered with
dominoes?

Is this NP-hard?
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Domino Tatami Covering is polynomial

A domino covering is a
perfect matching in the
underlying graph.

INPUT: A region, R , with n grid squares.
QUESTION: Can R be tatami covered with
dominoes?
This can be answered in O(n2), since the underlying
graph is bipartite.
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Tatami coverings as matchings

The tatami restriction is
the additional constraint,
that every 4-cycle contains
a matched edge.



DTC is NP-hard

Domino Tatami Covering
INPUT: A region, R , with n grid squares.
QUESTION: Can R be tatami covered with
dominoes?

Theorem (E., Ruskey, 2013)
Domino Tatami Covering is NP-hard.



Planar 3SAT

Let φ be a 3CNF formula, with variables U , and
clauses C . Let G = (U ∪ C ,E ), where {u, c} ∈ E
iff one of the literals u or ū is in the clause c . The
formula is planar if there exists a planar embedding
of G .

Planar 3SAT is
NP-complete (Licht-
enstein, 1982).



Reduction to Planar 3SAT
Working backwards from the answer...

b
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d b ∨ d̄

a ∨ b̄ ∨ c

c¬
∧

∧
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Verify the NOT gate

TF

NOT gate covering can be completed with all
“good” signals, but no “bad” signal.
“good” “bad”
F−→T T−→T

T−→F F−→F



Verify the NOT gate
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T−→T

NOT gate covering can be completed with all
“good” signals, but no “bad” signal.
“good” “bad”
F−→T T−→T

T−→F F−→F



Search for a NOT gate

TF

Search for sub-region, R , of the pink area. If R and
the chessboards can be covered with all “good”
signals, but no “bad” signal, we are done!
“good” “bad”
F−→T T−→T

T−→F F−→F



SAT-solvers
I A SAT-solver is software that finds a satisfying

assignment to a Boolean formula, or outputs
UNSATISFIABLE. We used MiniSAT.

I Given an instance of DTC, the corresponding
SAT instance has the edges of the underlying
graph G , as variables. A satisfying assignment
sets matched edges to TRUE and unmatched
edges to FALSE.

I Three conditions must be enforced:
1. TRUE edges are not incident.

2. An edge at each vertex is TRUE.

3. An edge of each 4-cycle is TRUE.
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SAT-solvers

We can generate, test cover, and forbid regions with
SAT-solvers.
4

12

CC#......#CC

CC#......#CC

CC#......#CC

CC#......#CC

2

.A........<>

.V........A.

.A........V.

.V........<>

<>........A.

.A........V.

.V........A.

<>........V.

2

<>........<>

.A........A.

.V........V.

<>........<>

.A........A.

.V........V.

.A........A.

.V........V.

Combine python scripts
with the SAT-solver Min-
iSAT (fast, lightweight,
pre-compiled for my system.)



Gadget Search

I request candidate
region, R, from
MiniSAT, satisfying
“good” signals.

I MiniSAT to test
each “bad” signal in
R.

I if every test
UNSATISFIABLE R
is the answer!

I Else, “forbid” R in
next iteration.



Huge search space

CC#....#CC

CC#....#CC

CC#....#CC

CC#..#.#CC

XXX.#..XXX

XXX..#.XXX

CC#.#..XXX

CC#....XXX

CC#....XXX

CC#....XXX

Require and forbid some
grid squares (#, X) to be
in R to reduce number
of disconnected regions.
Search a smaller area.



It worked!

T

T T

Inputs Output



Recall the context
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Verifiable by hand

T

T T

In Out

T

F F

In Out

F

T F

In Out

F

F F

In Out

TT−→T TF−→F FT−→F FF−→F



Verifiable by hand

*

F T

In Out

F

* T

In Out

T

T F

In Out

*F−→T F*−→T TT−→F
Impossible AND gate coverings, where * denotes F

or T.



Testing a clause

T

F



Simply Connected DTC

Is DTC NP-hard even if the region is simply
connected?



The Structure of Tatami Coverings



What are the consequences of this arrangement?



This placement is forced.



And this placement is also forced.



As is this.



And this.



Ditto.



Etc.



Until we reach the boundary.



This a ray. They can go NE, NW, SE, SW.



?

How do rays start? (The question mark.) Not a
vertical domino.



Monomino-Domino Tatami Coverings



Monomino-Domino Tatami Coverings

bidimer

loner

vortex

vee



We can enumerate and generate them!
For example, the number of coverings of the n × n
square with n monominoes is n2n−1.

Generating functions
Let Xk be a set of ak combinatorial objects for each
k ≥ 0. The generating function for {Xk}k≥0 is

f (z) = a0z0 + a1z1 + a2z2 + a3z3 + a4z4 + . . . .

If ak = 0 for some k ≥ K , then f (z) is a polynomial.
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Email from Knuth to Ruskey:

... I looked also at generating functions for the case
m = n, with respect to horizontal versus vertical
dominoes. ... for example when n = 11, the
generating function for tatami tilings with exactly
11 monominoes and 55 dominoes turns out to be
2(1 + z)5(1 + z2)2(1− z + z2)(1 + z4)(1− z + z2−
z3 + z4)p(z), when subdivided by the number of say
horizontal dominoes, where p(z) is a fairly
random-looking irreducible polynomial of degree 36.
One naturally wonders if there’s a good reason for
so many cyclotomic polynomials in this
factorization. ...



Count n × n coverings with n
monominoes, h horizontal dominoes

A diagonal flip is an operation on coverings which
preserves the tatami restriction, and changes the
orientation of some dominoes.



Count n × n coverings with n
monominoes, h horizontal dominoes

Good: Every covering is obtainable via a
sequence of diagonal flips.

Bad: Conflicting flips complicate enumeration.

Solution: Equivalence classes with independent
flips.



Classes of coverings with independent
diagonal flips

Longest “flipped” diagonal in green.

I Flippable diagonals
are independent of
one another.

I Can change s to
s in a predictable

way.

I Consider k-sum
subsets of multiset
{1, 2, . . . , 9, 1, 2, . . . , 5}
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Generating polynomial (E.,Ruskey)
Sn(z) =

∏n
k=1(1 + zk) “generates” k-sum subsets

of {1, 2, ..., n}. (algebra omitted...) Let

VHn(z) = Pn(z)
∏
j≥1

Sb n−2

2j
c(z)

where Pn(z) is a polynomial. For odd n, the kth
coefficient of VHn(z) is the number of n × n
coverings with n monominoes and h horizontal
dominoes.

Cyclotomic polynomial factors:

Sn(z) =
n∏

j=1

φ
b n+j

2j c
2j (z)
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“... where p(z) is a fairly random-looking irreducible polynomial...”

Not as random as it looks. e.g. complex zeros of
Pn(z). n is odd. Large n plotted with darker, smaller

dots.
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I deg(Pn(z)) =
∑n−2

k=1 Od(k), where Od(k) is
the largest odd divisor of k .

I Pn(1) = n2ν(n−2)−1, where ν(k) is the binary
weight of k .

I ... etc. But, is Pn(z) irreducible?

I Can it be computed without dividing

VHn(z) = Pn(z)
∏
j≥1

Sb n−2

2j
c(z).
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Open problems

I Efficient combinatorial generation

I Generalizations to other tiles

All tatami coverings of the 3× 4 grid.
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Lozenge 5-Tatami Covering

Is Lozenge 5-Tatami Covering NP-hard?
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Tomoku!

INSTANCE: A r × c grid and tiles completely
contained in each row and column.

QUESTION: Is there a tatami covering of this grid
with these row and column projections?
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Water Strider Problem

INSTANCE: A rectilinear region, R , with n
segments, and vertices in R2.

QUESTION: Is there a configuration of at most k
water striders, such that no two water
striders intersect, and no more water
striders can be added?



Thank you

Thanks also to Bruce Kapron and Don Knuth. Part
of this research was conducted at the 9th
McGill-INRIA Workshop on Computational
Geometry.
Slides at alejandroerickson.com

alejandroerickson.com
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