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Japanese Tatami mats

Traditional Japanese floor mats made of soft woven
straw.

A 17th Century layout rule:

No four mats may meet.




No four dominoes (mats) may meet

Tatami coverings of rectangles were considered by
Mitsuyoshi Yoshida, and Don Knuth (about 370

years later).
215. [21] Japanese tatami mats are 1x2 rectangles that are traditionally used to cover
rectangular floors in such a way that no four mats meet at any corner. For example,
Fig. 29(a) shows a 6 x 5 pattern from the 1641 edition of Mitsuyoshi Yoshida’s Jinkoki,
a book first published in 1627.
Find all domino coverings of a chesshoard that are also tatami tilings.
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(a) A 17th-century tatami tiling; (a) | | | l D)) ﬂ

(b) a tricolored domino covering. : | _IEEJI
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Tatami coverings of rectangles were considered by
Mitsuyoshi Yoshida, and Don Knuth (about 370

years later).
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rectangular floors in such a way that no four mats meet at any corner. For example,
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Coverings of the chessboard

There are exactly two

Generalized by Ruskey, Woodcock, 2009, using
Hickerson's decomposition.




Domino Tatami Covering
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Domino Tatami Covering

(Ruskey, 2009)

INPUT: A region, R, with n grid squares.
QUESTION: Can R be tatami covered with
dominoes?
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Is this NP-hard?
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Domino Ja¢amt Covering is polynomial
=2t _,_?J

A domino covering is a
:| perfect matching in the
underlying graph.
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Domino Ja¢amt Covering is polynomial
=2t _,_?J

A domino covering is a
:| perfect matching in the
underlying graph.

(22 I 20
INPUT: A region, R, with n grid squares.
QUESTION: Can R be #atam covered with

dominoes?
This can be answered in O(n?), since the underlying

graph is bipartite.



Tatami coverings as matchings

The tatami restriction is
the additional constraint,
that every 4-cycle contains
a matched edge.



DTC is NP-hard

Domino Tatami Covering

INPUT: A region, R, with n grid squares.
QUESTION: Can R be tatami covered with

dominoes?

Theorem (E., Ruskey, 2013)

Domino Tatami Covering is NP-hard.



Planar 3SAT

Let ¢ be a 3CNF formula, with variables U, and
clauses C. Let G = (UU C, E), where {u,c} € E
iff one of the literals u or u is in the clause c. The
formula is planar if there exists a planar embedding
of G.

Example: B=(0+b+c)(b+d)

sveihe ame araon oY Planar  3SAT s

e NP-complete (Licht-
enstein, 1982).




Reduction to Planar 3SAT

Workmg backwards from the answer..

Example: B=(o+b+c)(b+d)
Notice that (a+b+c) would
give the same graph as
(a+bec).




Reduction to Planar 3SAT

Working backwards from the answer...

Example: B= (a+b+c)(b+d)
Notice that (a+b+c) would
give the same graph as
(a+bec).




Verify the NOT gate
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NOT gate covering can be completed with all
“good"” signals, but no “bad” signal.

“good” “bad”

F—T T-—T

T—F F—F



Verify the NOT gate

1 2 6 8
n n 135 : 791:
F—T T—F F—F T—T

NOT gate covering can be completed with all
“good"” signals, but no “bad” signal.

“good”  “bad”

F—T T-—T

T—F F—F



Search for a NOT gate

Search for sub-region, R, of the pink area. If R and
the chessboards can be covered with all “good”

signals, but no “bad” signal, we are done!
“good” Hbad”
F—T T—T

T—F F—F



SAT-solvers

» A SAT-solver is software that finds a satisfying
assignment to a Boolean formula, or outputs
UNSATISFIABLE. We used MiniSAT.
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» Given an instance of DTC, the corresponding
SAT instance has the edges of the underlying
graph G, as variables. A satisfying assignment
sets matched edges to TRUE and unmatched
edges to FALSE.
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SAT-solvers

» A SAT-solver is software that finds a satisfying
assignment to a Boolean formula, or outputs
UNSATISFIABLE. We used MiniSAT.

» Given an instance of DTC, the corresponding
SAT instance has the edges of the underlying
graph G, as variables. A satisfying assignment
sets matched edges to TRUE and unmatched
edges to FALSE.

» Three conditions must be enforced:
1. TRUE edges are not incident.

= sauasan||
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2. An edge at each vertex is TRUE. | J

3. An edge of each 4-cycle is TRUE.




SAT-solvers

We can generate, test cover, and forbid regions with
4SAT—soIvers.

12

CC#...... #CC

CC#...... #CC 2

cor..wee .y Combine  python  scripts

o o with the SAT-solver  Min-

Vo Ao \ iISAT  (fast, lightweight,

Weeoroino Weo...v.  pre-compiled for my system.)
AL A.

<> .. A. Ve \'

AL V.

oo, A.



Gadget Search

nueRegions = @ #count the number of regions we have tried
previ = [

while(True):
umRegions
oprotess.Popent [ /minisat"  satinFilenane, satoutF ilenanel  stdout=subpra
)

N G ocese. PIPE]
» request candidate i .,

msp retum(ode 10): #satisfie
R Pacatgnment (satoutr enane)

ets
f R 2 gl #the region output fron last minisat of f
region, R, from A

uitError(‘error: two regions the same')
- . - . 1Hnumkegmns'd% 0):
MiniSAT, satisfyin
1 print "good configurations”

for k in range(C):
displayTiling(g,k)

¢ n WR = R
00 signals P s pakn clomes 1o ettt e
- for _clause in R:
\K\auscs = r(lauses + str(_clause) + ' o\n"

. . — for Kk in range(badc):
#for each bad configuration, check if it can be completed
> Ini O tes Fin the region R,

badConfig = open(badsatinFilenane, ‘w')
badConfig.write(badCNFstring[k] + rClauses)
badCont . close()

13 " - -
sp = subprocess.Popen( ['./ninisat" ,badsatinFilenane, badsatoutFilenamed
P stdou= sunpm:essﬂpa)
vait()

Hisp. returncode==10):

badFlag = True
;f(numxegmnmao,
. print 'bad configuration

displayTiling(getsATAssignnent (badsatoutFilenane) ,0)

break
elif(sp. returncode != 20]
Error('bad minisat returned bad code:

> if every test Ty

print "HORRA
sys. stdout. flush()

sys.exit(0)
B sve are going to append a forbidden region to satinFilenane
7

1 - openlsatinkilensme, 'rs
#change the First Line
f.5eek(0,0)

I fowrite('p cnf ' + str(nGoodVars) + ' ' + str(len(goodClauses)) + "\n')
. #make a clause from the forbidden region
clause(nap(neg, R)

tring =

for Lit in goodClauses[-1]:

m = . GlFstring = QNFstring + © * + ser(lit)
> se orpli In QiFstring = QWFstring + © o\n’
y Fappend this o the end of the file

+ str(sp.returncode))

th the number of clauses

f.seek(0,.
f.write((NFstring)
- - f.closel
next Ite ratlon eli7(5p. returncode 1= 20)
- QUX(EFFDH 'good minisat returned bad code: ' + str(sp.returncode))
else:
sys stdout. Hrl(e( THEFE is no region that satisfies the input.')
Sy Stdout. Flus

sys.exit(0)



Huge search space

CC#....#CC
CC#....#CC
CC#. .. .#CC _ _
Require and forbid some
CC#. .#.#CC :
grid squares (#, X) to be
XXX.#..XXX Rt ; .
XXX. .#.XXX '? i o re :ij nun1 er
CC#.#..XXX g ffonnecﬁ regions.
CC#. . . XXX earch a smaller area.
CC#....XXX

CC#....XXX



It worked!

Inputs Output




Recall the context




Recall the context




In
FF—F

FT—F

TF—F

TT—T

Verifiable by hand



Verifiable by hand

*F—T Fx—T TT—F

Impossible AND gate coverings, where * denotes F
or T.



Testing a clause




Simply Connected DTC

Is DTC NP-hard even if the region is simply
connected?



The Structure of Tatami Coverings




1

What are the consequences of this arrangement?



r

This placement is forced.



And this placement is also forced.



As is this.



And this.



Ditto.



Etc.



Until we reach the boundary.



This a ray. They can go NE, NW, SE, SW.



How do rays start? (The question mark.) Not a
vertical domino.



Monomino-Domino Tatami Coverings




Monomino-Domino Tatami Coverings
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We can enumerate and generate them!

For example, the number of coverings of the n x n
square with n monominoes is n2"!.



We can enumerate and generate them!

For example, the number of coverings of the n x n
square with n monominoes is n2"!.

Generating functions

Let X be a set of a, combinatorial objects for each
k > 0. The generating function for { Xy }x>o is

f(z) = 202’ + a1zt + a2 + a3+ ant + .. ..

If ax = 0 for some k > K, then f(z) is a polynomial.



Email from Knuth to Ruskey:

... | looked also at generating functions for the case
m = n, with respect to horizontal versus vertical
dominoes. ... for example when n = 11, the
generating function for tatami tilings with exactly
11 monominoes and 55 dominoes turns out to be
21+ 21+ 22)*(1—z+22) 1+ 21—z + 22—
z3 + z*)p(z), when subdivided by the number of say
horizontal dominoes, where p(z) is a fairly
random-looking irreducible polynomial of degree 36.
One naturally wonders if there's a good reason for
so many cyclotomic polynomials in this
factorization. ...



Count n X n coverings with n
monominoes, h horizontal dominoes

A diagonal flip is an operation on coverings which
preserves the tatami restriction, and changes the
orientation of some dominoes.
| H N




Count n X n coverings with n
monominoes, h horizontal dominoes

Good: Every covering is obtainable via a
sequence of diagonal flips.

Bad: Conflicting flips complicate enumeration.

Solution: Equivalence classes with independent
flips.




Classes of coverings with independent
diagonal flips

Longest “flipped” diagonal in green.

» Flippable diagonals
are independent of
one another.



Classes of coverings with independent
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Longest “flipped” diagonal in green.

» Flippable diagonals
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one another.

» Can change Is to
s in a predictable
way.



Classes of coverings with independent
diagonal flips

Longest “flipped” diagonal in green.

» Flippable diagonals
are independent of
one another.

» Can change Is to
s in a predictable
way.

» Consider k-sum

subsets of multiset
{1,2,...,9,1,2,...,5}



Generating polynomial (E.,Ruskey)

Sn(z) = [TiZi(1 + z¥) “generates” k-sum subsets
of {1,2,...,n}. (algebra omitted...) Let

W,(z) = Pa(2) [ | S|e2(2)

=1

where P,(z) is a polynomial. For odd n, the kth
coefficient of VH,(z) is the number of n x n
coverings with n monominoes and h horizontal
dominoes.



Generating polynomial (E.,Ruskey)

Sn(z) = [TiZi(1 + z¥) “generates” k-sum subsets
of {1,2,...,n}. (algebra omitted...) Let

W,(z) = Pa(2) [ | S|e2(2)

=1

where P,(z) is a polynomial. For odd n, the kth
coefficient of VH,(z) is the number of n x n
coverings with n monominoes and h horizontal
dominoes.

Cyclotomic polynomial factors:

n+j

5(2) = [ 05 (@



. where p(z) is a fairly random-looking irreducible polynomial...”

Not as random as it looks. e.g. complex zeros of

P,(z). nis odd. Large n plotted with darker, smaller
dots.
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the largest odd divisor of k.
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» Pa(1) = n2"("=2)=1 where v(k) is the binary
weight of k.
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Not as random as it looks.
» deg(P,(z)) = 32123 Od(k), where Od(k) is
the largest odd divisor of k.
» Pa(1) = n2"("=2)=1 where v(k) is the binary
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» ... etc. But, is P,(z) irreducible?



“... where p(z) is a fairly random-looking irreducible polynomial...”

Not as random as it looks.
» deg(P,(z)) = 32123 Od(k), where Od(k) is
the largest odd divisor of k.
» Pa(1) = n2"("=2)=1 where v(k) is the binary
weight of k.
» ... etc. But, is P,(z) irreducible?
» Can it be computed without dividing

Win(2) = Po(2) [ [ S|z (2).

=1



Open problems

» Efficient combinatorial generation

All tatami coverings of the 3 x 4 grid.
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Open problems

» Efficient combinatorial generation
» Generalizations to other tiles

All tatami coverings of the 3 x 4 grid.
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Lozenge 5-Tatami Covering




Lozenge 5-Tatami Covering

Is Lozenge 5-Tatami Covering NP-hard?



Tomoku!
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INSTANCE: A r x c grid and tiles completely
contained in each row and column.
QUESTION: Is there a tatami covering of this grid
with these row and column projections?



Tomoku!
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INSTANCE: A r x c grid and tiles completely
contained in each row and column.
QUESTION: Is there a tatami covering of this grid
with these row and column projections?



Water Strider Problem




Woater Strider Problem
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Woater Strider Problem

INSTANCE: A rectilinear region, R, with n
segments, and vertices in R2.
QUESTION: Is there a configuration of at most k
water striders, such that no two water
striders intersect, and no more water

striders can be added?
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