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Abstract
The Scholars Programme course How to Make a Mathematical 
Discovery guides pupils through the process of discovering and 
proving mathematical theorems in the context of locally restricted 
arrangements of tiles.  After studying restricted arrangements of 
1x1 monomino tiles and 1x2 domino tiles on rectangular grids, 
pupils apply the methods they have learnt in order to make 
mathematical discoveries with a different set of tiles and restrictions, 
collectively called tatami restrictions. They are asked to give a brief 
evaluation of various tatami restrictions, and then to narrate any 
discoveries that they have made about the 5-tatami restriction 
for arrangements of triangles and lozenges on the isometric grid.  
The two figures from the course material shown below are central 
to this Scholars Programme and provide some context for the 
article. The first is a summary of significant tile-arrangements that 
can occur on rectangular-grids, and the second is an example of 
monomino-domino tatami covering in which no four tiles meet at 
any point, and that uses all of the significant arrangements (up to 
rotation and reflection) shown in the first image.

Section 1 Introduction
We consider restricted arrangements of triangle and lozenge tiles 
on isometric grids.  A tatami restriction is a restriction where 
certain numbers of tiles cannot meet at one point on a grid. This 
restriction can range from 2-tatami (where two tiles cannot meet) 
up to 6-tatami (where six tiles cannot meet) on an isometric grid. 
Fundamentally, the study of tatami coverings is discrete rather than 
continuous. The tatami-restriction creates ‘forced’ placements of 
tiles, so that the tiles do not violate or conflict with the restriction 
itself. 

Section 2 Discussion of various tatami restrictions

Section 2.1 The 2-tatami restriction
The 2-tatami restriction is satisfied when two tiles do not meet 
anywhere on an isometric grid. This creates a pattern that is 
combinatorially uninteresting because it is too restrictive, as the 
tiles have to be isolated, so they do not meet at a point. Therefore, 
the isometric grid cannot be completed with this restriction because 
two tiles will meet at a point if they are placed beside each other. 
However, small grids can be covered with the 2-tatami restriction; 
in particular, a tile can be placed on a grid with space for one tile, 
so that the grid is completed without opposing the restriction.

Section 2.2 The 3-tatami restriction
The 3-tatami restriction is satisfied when three tiles do not meet 
anywhere on the isometric grid. Moreover, I think that this 
restriction creates a combinatorially uninteresting pattern because 
most large grids cannot be completed without creating a pattern 
where three or more tiles meet at a point. This is because there 
can only be two tiles meeting at a point in order to abide by the 
restriction and there would have to be four tiles meeting at a 
point in order to complete the isometric grid. Consequently, this 
restriction is too restrictive due to the fact that the whole isometric 
grid cannot be completely covered. 

Alternatively, the grid can be completed if it has only one row 
because one row of tiles can be placed on such a grid so that only 
two tiles are meeting at a point. Thus, the restriction has not been 
violated; this is displayed in Fig. 1. The 3-tatami restriction is not 
as restrictive as the 2-tatami restriction because grids with only a 
single row can be completed.

Section 2.3 The 4-tatami restriction
The 4-tatami restriction forbids configurations of tiles that have 
the following property: on the vertices of the isometric grid, four 
tiles meet at a point. Therefore, similar to the 3-tatami restriction, 
it is also quite restrictive, because certain large grids cannot be 
completed.  For example, rays, an important structure in 5-tatami 
coverings (such as in Fig. 7), cannot be constructed without 4-tiles 
meeting at a point, so the grid is unable to be completed without 
opposing the restriction. This means that the tiles can only be 
placed on the grid when they are partially isolated from each other 
or they meet at a point with three or fewer tiles (such as in the 
centre of Fig. 7). However, they cannot be placed with four tiles 
meeting to complete the grid, as a violation will take place. 

Fig. 1.

Section 2.4 The 5-tatami restriction
The 5-tatami restriction is combinatorially interesting because it 
allows a wide variety of patterns to be created without a violation of 
the restriction taking place. In addition, rays, shown in Fig. 6 and 
described in Erickson (2013), can be created by the continuation 
of certain configurations of four tiles meeting at a point, so that 
the isometric grid can be completed. Some of the tiles can then 
be flipped so that the ray has changed, but the violation has still 
not occurred. Therefore, I think that the 5-tatami restriction is the 
most interesting out of the restrictions I have discovered, because 
it is a restriction that allows many ideas to be fulfilled without 
conflicting with the restriction. 

The idea of flipping a row is demonstrated via the coloured tiles 
in Fig. 2.  Different rows from this isometric grid can be flipped, 
like the row shown, without the restriction being violated. A 
violation does not take place because only half of the ray is being 
flipped, so there is still a continuous ray that is similar to the 
beginning ray. This causes, in my opinion, the most fascinating 
restriction, because it is a catalyst for many designs to be created 
with different amounts of lozenge and triangle tiles included in the 
isometric grid.  Additionally, in most cases the triangle tiles can 
only be placed on the outer rows of the isometric grid in order to 
abide by the tatami restriction, because there will be 5 or 6 tiles 
meeting at a point if the lozenge is placed away from the edge of 
the isometric grid. The triangle tile creates placements that are 
‘forced’ and these placements create a circular design, so five or 
six tiles meet at a point, and this violates the 5-tatami restriction.

Section 2.4 The 6-tatami restriction
The 6-tatami restriction allows the most variety of patterns to 
be created without violating the restriction, as the only pattern that 
violates this restriction looks similar to a flower, with the ends of six 
tiles meeting at one point, as in Fig. 3. Moreover, this restriction 
is also combinatorially interesting because different designs can be 
created with a wide variety of patterns. Many such patterns that would 
otherwise violate the 2, 3, 4, and 5-tatami restrictions can be placed 
on the grid without violating the 6-tatami restriction. Therefore, this 
restriction is rather unrestrictive because almost every covering is 
possible. It can therefore also be argued that this makes the 6-tatami 
an uninteresting restriction, because almost any design is possible. 

Section 3 Further Observations and discoveries
With the wording of the tatami restrictions, I began to wonder 
whether you could place four, five, or six tiles meeting at a point 
without violating the 3-tatami restriction. This is because the 
3-tatami restriction only stated that three tiles could not meet 
at a point; it never specifically stated that four, five, or six tiles 
could not meet at a point because it would violate the restriction. 
Consequently, I began to draw some of the 4, 5, and 6-tatami 
violations to observe whether the restriction would be violated. 
After further observations, I realised that three tiles also meet at 
a point where four, five, or six tiles meet and that the 3-tatami 
restriction would probably also be violated; this can be visualised in 
Fig. 3. The coloured tiles represent three tiles that meet at a point 
on these violations. Therefore, the 3-tatami restriction is violated 
where four, five, or six tiles meet at a point. This illustrates the 
fact that a maximum of two tiles can be placed next to each other 
in order to abide by the restriction.

Theorem
The 5-tatami restriction includes a pattern that resembles a sodium 
chloride crystal.

Proof 
The structure of a 5-tatami arrangement includes rays and has an 
organised appearance, such as where 4 lozenge tiles are placed at 
one point together.  Placing the tatami tiles in an interesting way 
can create the illusion of sodium chloride crystal-like cube. This is 
demonstrated in Fig. 4.

The structure of this 5-tatami arrangement consists purely of 
diamonds, and they are placed so that four tiles meet at one point. 
These 4-tile arrangements are then placed in rows that are then 
rotated to fit inside the isometric grid. Moreover, this abides by the 
5-tatami restriction because at most four tiles meet at each point 
of the grid and it also creates an illusion of a cube. Furthermore, 
this pattern is interesting despite the fact that it is simple and 
organised. This is combinatorially interesting because this pattern 
illustrates a local rule for the placement of individual parts needed 
to build something complex like a sodium chloride crystal.

Interestingly, the structure shown in Fig. 4 resembles the structure 
of a sodium chloride crystal, shown in Fig. 5. This is because the 
particles inside the crystal are fixed in rows and columns and the 
tiles in the pattern are also organised in rows that rotate, so they 
complete the isometric grid covering. The global structure of the 
5-tatami restriction, in a way, echoes the structure of a sodium 
chloride crystal, perhaps because of a resemblance between the 
local rules of these structures; a local rule that emphasises the 

Fig. 2.

Fig. 3. 

Fig. 4 and fig. 5. Sodium chloride crystal
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strong relation between the tiles or particles. The tiles or particles 
are locally organised in a specific, orderly fashion to create 

Section 3.1 The vortex
After studying the four essential configurations, loners, vees, 
bidimers, and vortices, for the beginning of a ray on a square 
grid with monominos and dominos, defined in Erickson (2013), 
I began to test whether the rays would begin the same way on an 
isometric grid. I realised that a vortex could be used to start a ray 
on an isometric grid, where the starting point is a triangle and the 
surrounding ray is made up of lozenges. Furthermore, I based 
this discovery on the fact that the square-grid vortex starts with 
a monomino on a grid based upon monominos and dominos, so 
I realised that a vortex on the isometric grid would have to begin 
with a triangle surrounded by lozenges. This will mean that a 
grid can be successfully completed. Surprisingly, the vortex also 
abides by the 5-tatami restriction, so the 5-tatami restriction is, in 
my opinion, extremely interesting due to all the possible tatami 
coverings that can be completed without a violation. This means 
that the 5 tatami restriction is not very restrictive and it allows us 
to think about all the possible ways in which the tiles can be placed 
in order to create coverings that match the restriction itself. The 
configuration of a vortex on an isometric grid is shown in Fig. 6.

The coloured section demonstrates the beginning of the vortex 
rays, with the triangle surrounded by lozenges. As you can see, 
this is very similar to the vortex created on a grid with monominos 
and dominos (Editor’s note: The configuration referred to is 
provided in the abstract). The properties of both of these grids are 
therefore very similar, and the configuration of the vortex can be 
adapted to the isometric grid.

Section 3.1 The triple bidimer
As the vortex could successfully be completed, I started to 
investigate an isometric way of creating a bidimer. I did this by 
placing two diamonds together like a bidimer and then beginning 
to create rays from the two diamonds. There could only be three 
rays created from the centre of the triple bidimer because of the 
isometric grid restricting the triple bidimer to three rays. This is 
due to the fact that the placement of another diamond is forced 
in the centre of the triple bidimer in order for rays to be created. 
Therefore, there are only three corners in which rays can be 
developed from, rather than four corners like in a rectangular grid. 
My idea is highlighted in Fig. 7.

The colour red illustrates my initial idea to create two lozenges 
and place them together like a bidimer on a rectangular grid, but 
I had to adapt my initial idea to fit the isometric grid. This is 
demonstrated by the addition of another diamond, which is green, 
to create a shape that is almost like a cube in the centre of the triple 
bidimer. As a result of the addition of a diamond, there could only 
be three rays developed from the corners of the starting shape. 
This is adaptation is based upon the bidimer that was created for 
the rectangular grid (Editor’s note: The configuration referred to 
is provided in the abstract).  

Section 4 Conclusion
In conclusion, the tatami restricted arrangements of tiles are in 
general a combinatorially interesting concept that frames many 
ideas and discoveries.  Tatami restrictions range from being too 
restrictive to not very restrictive at all and that makes tatami, in my 
opinion, very interesting and a fascinating concept to investigate 
and make new discoveries on. The local rules that I have been 
investigating contribute to complex structures on a larger scale; for 
example, I learnt that most (unrestricted) arrangements of lozenge 
coverings form an ‘Arctic circle’1.   

Tatami is the most fascinating part of mathematics that I have 
developed an understanding of so far, as the restrictions are 
almost like a foundation to discover many different things through 
existing objects and through mathematical prospects, like the 
‘Arctic circle’.
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mathematical structures by combining diagrams, making 
comparisons to familiar objects, and effectively employing a 
wide range of descriptive vocabulary, including many words 
that were introduced in the Scholars Programme.
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Abstract
As the average age of the population increases so does the 
prevalence of neurodegenerative diseases. The most common 
forms these neurodegenerative diseases take are Alzheimer’s, 
Parkinson’s and Motor Neuron Disease which all affect the 
brain and/or spinal cord, and have devastating implications for 
the individual and family affected. These diseases are putting the 
economy and public health services under severe strain due to 
the lack of effective treatments and high costs of palliative care. 
We still have a long way to go to fill in the large gaps in our 
knowledge of these conditions and we desperately require effective 
treatments to alter the disease and improve the patient’s quality of 
life. This essay will describe what is known about these conditions 
including: what the condition is, what the symptoms are, what 
some of the pathological features are and finally what treatments 
are available. Also covered here are the similarities and differences 
between these disorders, what stem cell therapy is and how it 
has potential use for modelling and treating these diseases. The 
ultimate aim here is to highlight the need for action and further 
research to investigate how these diseases work in order to develop 
effective disease models and treatments.   

Introduction
With millions of people affected worldwide, neurodegenerative 
diseases have become much more prevalent in our current society, 
leading to researchers investigating ways to treat these ubiquitous 
diseases of the brain. Ranging from Alzheimer’s Disease (AD) to 
Parkinson’s Disease (PD) and forms of Motor Neurone Disease 
such as Amyotrophic Lateral Sclerosis (ALS), neurodegeneration 
or the death of neurones in the central nervous system are still 
under thorough research as to how these diseases affect people, 
and more significantly, what causes neurodegeneration itself.  
Despite the treatments and therapeutic methods available for other 
disorders in the world such as diabetes, there is still no finalised 
cure for any of the three major neurological diseases. ‘Neurological 
disorders remain neglected and ignored…’1 – their complexity in 
terms of their causes and complication in ways of treating the 
diseases mean that these heterogeneous disorders are still the 
cause of 4% of all deaths worldwide.2 However, with the drastic 
improvement in medical technology – for example, the use of 
positron emission tomography (PET) – researchers are beginning 
to explore new novel treatments such as stem cell therapy, which 
creates hope that someday there will be an ultimate cure for all of 
the neurodegenerative diseases we are faced with. 

Alzheimer’s Disease
Alzheimer’s Disease (AD) is a chronic neurodegenerative disease 
affecting over 40 million people worldwide, with the common 
symptoms being cognitive dysfunction and confusion. The 
progressive and incurable quality of this disease results in AD being 
the sixth greatest cause of all deaths in the United States alone.3 

Much like other neurodegenerative diseases such as Amyotrophic 
Lateral Sclerosis (ALS) – a common form of Motor Neurone 
Disease – AD is also linked to ageing, although other risk factors 
have also been believed to be a cause of the disease. Similarly to 
Parkinson’s disease, one of the proposed factors linked to AD is 
the decrease in levels of a certain neurotransmitter that is essential 
in regulating specific bodily systems. In AD, it is believed that the 
decrease in the levels of acetylcholine (ACh) neurotransmitters 
found in cholinergic neurones in some parts of the central nervous 
system (CNS) are one of the causes of confusion and cognitive 
dysfunction – symptoms are evident amongst 20% of AD patients.4 

As acetylcholine is vital in the transfer of electrochemical impulses 
between cholinergic neurones that enable cognitive processing, the 
decrease in this particular neurotransmitter means that cognitive 
ability is impaired. The progression of AD (with the progressive 
decrease in ACh) links to the deterioration in AD patients’ 
cognitive ability. The scores for mild AD are nearly three times 
greater than that of severe Alzheimer’s disease, reiterating how the 
lack of the acetylcholine neurotransmitter causes symptoms of AD 
to worsen over time.

A major cause associated with Alzheimer’s Disease is the amyloid 
plaques between neurones in AD patients. The formations of 
these amyloid plaques are from parts of an amyloid precursor 
protein (APP), called beta amyloid, which are congested between 
nerve cells in the brain.5 The insoluble plaques disrupt nerve 
signalling and the delivery of electrochemical impulses to neurones 
as synaptic transmission is prolonged. Both AD and PD involve 
the abnormality of certain protein structures – however, in PD, it 
is the abnormality in alpha-synuclein and its function that causes 
symptoms to occur. In terms of AD, another major cause of 
this disease is the neurofibrillary tangles in the brain that are a 
result of the abnormal structure of Tau, a protein that stabilises 
structures called microtubules which are fundamental for the 
transportation of nutrients between neurones. The microtubules 
are also essential for the signalling system between nerve cells. In a 
person without AD, Tau molecules bind to microtubules to form 
the necessary structures; in a person with AD, on the other hand, 
Tau molecules connect with more molecules of Tau which cause 
neurofibrillary tangles to develop within the neurones. This causes 
the degeneration of neurones in the brain as the neurofibrillary 
tangles disintegrate the microtubules. Indeed, the lack of nutrients 
being delivered to the neurones and the additional collapse of 
neuronal systems that control the transmission of signals can also 
cause neurodegeneration.6

The main difference that sets AD apart from PD and ALS is the 
area in the brain in which the neurological disease affects. The 
symptoms of each disease have a direct correlation to the parts of 
the brain or body that are affected. In AD, affected areas include 
the temporal lobes and the hippocampus in the brain; in PD, a 
region in the mid brain called the substantia nigra is affected; 
lastly, in ALS, the nerves and the muscles – in particular, the 
neurones extending from the brain to the spinal cord of the CNS – 
are affected.7 In terms of AD, for instance, as elucidated in Fig. 2, 
brain atrophy (the shrinkage of the brain) is present as the whole 
Alzheimer’s brain is significantly smaller in size in comparison 
with the normal brain. Researches have supported the findings 
of brain atrophy in AD patients, as they found that AD brains 
are 10% smaller in mass: the average adult brain being 1.3-1.4kg; 
an AD brain being 1.17-1.26kg.8 Fig. 1 also depicts how the loss 
of glucose uptake (shown in the Positron Emission Tomography 
scan) in the upper and lateral sections of the brain have caused 
symptoms associated with those areas to occur. For instance, the 
frontal cortex and the temporal lobes, where the amydala and 
hippocampus are located, are areas of low glucose uptake. This 
helps to explain how AD patients have difficulty with learning and 
memory (as the hippocampus has been affected) and even speech 
production and word recognition since the Wernicke’s area (in 
control of word recognition) and the Broca’s area (in control of 
speech production) are located in the affected temporal lobes. The 
darker areas and gaps in the image of the AD brain also indicate 
enlarged ventricles, helping to explain how patients with AD have 
much more severe cognitive impairment (60% more severe) in 
comparison with those with milder cognitive impairment.9


